当前位置: 主页 > 知识与标准 > 臭氧知识 > 臭氧氧化法影响因素及优缺点介绍

臭氧氧化法影响因素及优缺点介绍

臭氧氧化法影响因素及优缺点介绍

摘要

臭氧氧化法影响因素及优缺点介绍 1. 臭氧氧化法的基本原理 20 世纪末,随着高频高压电晕放电的应用,O3相关技术应用及产业规模快速发展。目前,臭氧氧化技术早已成为水处理领域中

更新时间:2020-12-30
来源:www.tonglin.cn
作者:同林科技
浏览:
关键词: 臭氧技术 关键因素 处理效果 臭氧水生成设备 臭氧水实验 臭氧反应时间 臭氧净水工艺 臭氧去除异味 臭氧消毒实验 臭氧饮用水 80g/h 超滤膜曝气 耐高压 臭氧产量区别 抗生素废水降解处理 水处理应用 微细气泡技术 药物合成反应 臭氧特性 MBE 分子束外延 臭氧源 实验室臭氧发生器 显示屏 Atlas-H30 二手臭氧发生器 BMT 802N 空气气源 氧气气源 臭氧尾气破坏装置 ALD设备 分解效率装置 苏伊士 首创集团 臭氧除杂 原理与机制 杂质 碳酸锂浆料 臭氧发生器PLC 3S-J5000臭氧检测仪 3S-KW 管道式 去除新兴污染物 洗车业务 臭氧去除氨 臭氧高级氧化工艺 酚类物质 负压臭氧发生器 臭氧微气泡曝气 清华大学 臭氧化反应 ald臭氧 200g臭氧发生器 菲律宾 海水养殖尾水 微通道 CVD 微通道反应器 工业臭氧解决方案 实验室高压臭氧 Apex P30臭氧设备 微通道膜反应 高压臭氧发生器 选型指南 《环境空气质量标准》 锂电池 臭氧粮仓害虫消杀系统 清洗杀菌 水产品 电耗 O3暴露 臭氧发生一体机 杀菌潜力 低浓度臭氧 风冷 功率 纯臭氧发生器 明电舍 MEIDEN 臭氧清洗 3S-H20 臭氧在水再利用 井水处理 氰化物 臭氧溶解度 瓶装饮用水 游泳池消毒 微纳米气泡 高级氧化技术 纸浆漂白 同林工厂 水处理公司 臭氧消毒原理 工作过程 海产品加工 中试实验装置 臭氧除臭系统 臭氧灭菌 泳池臭氧消毒
详细介绍相关案例

臭氧氧化法影响因素及优缺点介绍

1. 臭氧氧化法的基本原理

 

        20 世纪末,随着高频高压电晕放电的应用,O3相关技术应用及产业规模快速发展。目前,臭氧氧化技术早已成为水处理领域中极具发展及应用前景的技术。臭氧氧化过程可分为直接氧化和间接氧化。由O3的电子结构可知: O3既可作为亲电试剂,也可作为亲核试剂,臭氧两端的氧原子还可发生环加成反应。

 

        因此,臭氧直接氧化机理可分为亲电反应、亲核反应以及加成反应。O3直接氧化存在选择性,面对饱和脂肪族等有机物,O3难以直接将其氧化; 并且O3性质不稳定,会自行分解并释放出热量,如式( 29) 所示:

 

O3 →1. 5 O2 + 144. 45 kJ ( 29)

 

        臭氧间接氧化是指在水溶液中,O3与OH- 等作用产生·OH,再通过·OH 氧化污染物。目前,关于O3在水体中链式分解的解释主要有TFG 和SBH 机理。在碱性条件下,O3与OH- 的反应主要以TFG 模式进行,关键步骤如式( 30) —( 34) 所示; 而在弱酸性及中性条件下,则主要以SBH 模式进行,关键步骤如式( 35) —( 37) 所示。二者之间的差别在于链引发的方式不同,SBH 模式为单电子转移过程,TFG 模式为两电子转移过程。


        后来根据不同实验结果对这2 个机理进行修正,发展出SBH-1998、SBH-2009、TFG-2009 和NGF 等机理。周鹏等]利用Acuchem 软件模拟了O3链式分解过程,当pH= 5 和pH= 7 时,C-SBH-1998 与实际结果拟合良好,当pH = 10. 5 时,C-TFG-2009 与实际结果拟合良好。

 

 

2. 臭氧氧化法的影响因素

        臭氧氧化法主要受pH、温度、O3投加量/投加方式、淬灭剂等影响。由反应原理可知: pH 值影响O3与污染物的反应机制及反应动力学,酸性条件下O3与污染物的反应主要以直接氧化为主,反应速率常数k 为10-1 ~102 mol /( L·s) ,当pH<4 时,间接氧化作用可忽略不计; 而在碱性条件下,主要以间接氧化为主,k 为106 ~109 mol /( L·s) 。当介质处于弱酸性与中性时,间接氧化以SBH 模式为主; 当处于碱性时,间接氧化以TFG 模式为主。

 

        温度影响O3在水体中的溶解度、稳定性及反应速率,升温会导致溶解度下降并加快O3分解,但升温有利提高反应速率。O3投加量直接影响污染物的降解效果。一般而言,增大O3投加量,污染物去除率会逐渐提高,但随着O3投加量的增加增幅逐渐减小,故O3投加量存在一个效果与经济均较佳的范围,因此要根据反应体系条件、处理目标、处理对象等确定; 另外,还需要考虑到溴酸盐、甲醛等臭氧化副产物的生成问题。

 

        投加方式影响传质过程。常见的投加方式有预投加、中间投加等。研究表明,多点布气和增加布气点数有助于O3传质,但当布气点数高于3 个点时,传质效率无明显提高并容易导致出水O3浓度过高。介质自由基淬灭剂如CO2-3 、HCO-3 、Cl- 等会与污染物分子形成竞争,降低氧化效率。在实际应用中,可以通过加强预处理减少淬灭剂含量。

 

3. 臭氧氧化法的优缺点

        臭氧氧化技术的独特优势在于兼具消毒、脱色除臭的效果。可通过破坏致病菌的代谢酶、遗传物质或细胞膜的通透性等将微生物杀灭,其杀菌能力优于氯消毒,此外,O3可破坏碳氮双键、偶氮等发色或助色基团,还能氧化去除氨、硫化氢、甲硫醇等恶臭气体;无二次污染,剩余O3会自行分解并增加水体中的溶解氧; 曝气有搅拌作用,可均匀物料、强化传质效果。该技术面临的困境主要体现在O3产量低且利用率低、臭氧化副产物、设备腐蚀等方面。

      目前,生产O3的方法有介质阻挡放电法、紫外线法、电解法等,应用很广泛的介质阻挡放电法所产生的O3量不超过10%,大约85%的能量变为热量,能量浪耗严重且高温加剧O3分解。此外,气相O3浓度低和反应器传质效果差导致O3利用率低,可通过优化两相接触方式及其内部构件,如鼓泡扩散式、静态混合式、射流式、膜接触式、逆流接触式等,采用促传剂,降低表面张力,增加气泡溶解度,或外加电场、超声场等方式提高O3利用率。O3还能将水体中Br- 氧化为具有潜在致癌作用的溴酸盐,GB 5749—2006《生活饮用水卫生标准》中规定饮用水中溴酸根浓度不得超过0. 01 mg /L; O3氧化有机物的过程中可能产生醛类如甲醛、乙醛、乙二醛等副产物,对人体产生危害。此外,O3还会对设备、管道部件等造成腐蚀。